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INTRODUCTION

Understanding linkages between primary and secondary
productivity is a central focus of both ecological theory
and the management of rangelands, which includes a
diverse array of grassland and shrubland ecosystems
worldwide. Rangelands are characterized by substantial
temporal and spatial variability in precipitation and tem-
perature, both within and among years (Augustine, 2010;
Knapp & Smith, 2001). This variability affects forage
resources and their heterogeneous spatial-temporal dis-
tribution (Ganskopp and Bohnert 2009, Browning et al.,
2018), which directly influences seasonal performance of
livestock (Vavra & Raleigh, 1976) and wild ungulates
(Garel et al., 2011; Owen-Smith, 2002). Free-ranging
livestock provide a good model system for studying
large herbivores since managerial control enables high-
quality and high-frequency data collection. While the
mechanistic links among diet quality, forage quantity,
and livestock performance are well known (Van Soest,
1994), information about how spatial-temporal variability
in forage (e.g., the abundance, timing, and duration of
access to high-quality forage) affects free-ranging livestock
performance remains elusive. This is largely due to the
lack of data at a sub-seasonal time step (Rouquette, 2016),
as it is labor intensive to monitor animals at frequent
intervals while concurrently collecting forage condition
data for the area they have been grazing (Ganskopp &
Bohnert, 2009).

This lack of knowledge presents challenges for
implementing adaptive rangeland management strategies
that seek to mitigate the effects of fluctuating forage condi-
tions on large herbivore performance, while also meeting
rangeland health and conservation objectives (Williams,
2011). To date, decision-making for adaptive rangeland man-
agement has largely relied on (1) coarse-scale, field-derived,
correlative relationships, including using growing season pre-
cipitation and large-scale climate patterns to predict forage
production (Chen et al, 2017) or livestock performance
(Derner et al., 2008), and (2) fine-scale, individual site moni-
toring of key variables on the ground such as rangeland
health indicators (Pyke et al., 2002). To support adaptive
management on rangelands, new tools are needed that can
(1) assess changes in forage conditions throughout the

health, or timing the grazing season to better match earlier spring green-up

caused by climate change and plant species invasion.
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growing season across diverse plant communities and (2) link
performance of large herbivores with spatial-temporal
changes in forage conditions.

A subset of decision tools for adaptive rangeland man-
agement, such as the Livestock Early Warning System
(LEWS; Stuth et al., 2004), the Grassland Production Fore-
cast (Grass-Cast; Peck et al., 2019) and others, have begun
to fuse applied ecological relationships with remote sensing
and predictive modeling. Tools based on remotely sensed
data have the unique ability to provide “wall-to-wall” pre-
dictions across large or remote areas common to rangelands.
Lacking, however, are tools relevant for management
decision-making at finer temporal (daily to monthly) and
spatial (paddock or ranch) scales. Many managers use rota-
tional grazing strategies employing adaptive triggers based
on field-observed vegetation (e.g., growth stage, height) and
animal behavior to move livestock to the next paddock
(Teague & Barnes, 2017). However, it is difficult to collect
field observations frequently across large spatial extents,
and relationships between vegetation-based triggers and
livestock performance (e.g., mass gains, a key management
outcome) are rarely well quantified. Furthermore, remote-
sensing applications to rangelands have focused primarily
on quantifying forage production (e.g., Eisfelder et al., 2012;
Gaffney et al., 2018; Jansen et al., 2018; Zhou et al., 2019),
while estimates of forage quality are less common.

Existing forage quality assessments from remote sens-
ing often use airborne hyperspectral (Pullanagari et al.,
2018) or high resolution satellite imagery (Adjorlolo et al.,
2014), which are cost prohibitive, thus limiting their
temporal resolution and the ability to link forage quality
with large herbivore performance within the grazing
season. Remote-sensing applications with high temporal
frequency but low spatial resolution (>250 m) have
captured broad patterns in diet quality, distribution, and
performance of large herbivores (Geremia et al., 2019;
Hamel et al., 2009; Middleton et al., 2018; Tolleson et al.,
2020). Yet these spatially coarse images are poorly corre-
lated with point-based forage quality measurements
(Garroutte et al., 2016; Kawamura et al., 2005) making it dif-
ficult to link them to fine-scale (e.g., paddock-scale) animal
performance and adaptive management decision-making.
Recent advances in data fusion techniques permit satellite-
based images to be produced pseudo-daily (i.e., some data
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points are interpolated) at moderately high spatial resolu-
tion (30 m) with freely available data (Gao et al., 2015). This
time-series data can be used to link fine-scale field data on
forage conditions with animal performance, even when data
have been collected at different temporal frequencies.

We sought to (1) develop a robust model to predict
weekly diet quality (an integrated indicator of paddock-
scale forage quality derived from fecal samples) using
phenological metrics derived from a pseudo-daily 30-m
satellite time series, (2) predict sub-seasonal performance
(mass gains) of individual free-ranging yearling cattle
based on these diet quality predictions, along with forage
production predicted using an existing satellite-based
model, and (3) use the relationships among diet quality,
forage production, and sub-seasonal mass gains to predict
season-long mass gains in independent sites.

METHODS

We combined daily satellite observations with field data
sets collected at varying temporal scales to predict pseudo-
daily and season-long cattle mass gains (Figure 1). To do
this, we first predicted daily diet quality and forage pro-
duction (biomass) from phenological metrics derived from
the satellite time series. We then predicted daily mass gain
from the diet quality and biomass estimates and compared
predicted season-long mass gains against field data.

Study area

We conducted this study at the USDA-Agricultural
Research Service Central Plains Experimental Range
(CPER) in north-central Colorado, USA (40°49’ N, 107°46'
W), a Long-Term Agroecosystem Research (LTAR) network
site covering approximately 6,270 ha. The study area con-
sists of shortgrass steppe vegetation, with a mix of perennial
warm-season (C,) and cool-season (C;) grasses and
graminoids. The dominant warm season grass is blue grama
(Bouteloua gracilis [Willd. ex Kunth] Lag. ex Griffiths. The
most common perennial cool-season graminoids are
needle-and-thread (Hesperostipa comata [Trin. & Rupr.]
Barkworth), western wheatgrass (Pascopyrum smithii
[Rydb.] A. Love), and needle-leaf sedge (Carex duriuscula
C.A. Mey.). Mean annual precipitation is 341 mm with
70% occurring May-September.

Paddocks included in this study ranged from 75 to
260 ha, with most being ~130-ha “half-sections”
(Appendix S1: Table S1), and were grazed by free-ranging
British-breed yearling steers from mid-May to early
October (135 days). Nonmigratory pronghorn antelope
(Antilocapra americana) are the dominant wild ungulate

in the area. Landscape-scale aerial surveys indicate they
are present at densities of ~1.0-1.5 pronghorn/km? (Pojar
et al., 1995), and their presence was unlikely to influence
results. Black-tailed prairie dogs (Cynomys ludovicianus)
are the dominant small-mammalian herbivore in the
region, but prairie dogs were excluded from paddocks
included in this study using lethal control.

Data acquisition
Weekly diet quality data

We used two measures of diet quality derived from ana-
lyses of cattle fecal samples, crude protein (CP) and digest-
ible organic matter (DOM), as indicators of paddock-scale
forage quality. Fecal samples were collected from three to
five animals per paddock (10%-25% of animals in each
herd) weekly during each grazing season from 2014 to
2019 across 10 different paddocks (Appendix S1: Table S1).
Samples were analyzed at the Grazingland Animal Nutri-
tion Lab (GANlab) using near infrared spectroscopy
(Lyons et al., 1995; Lyons & Stuth, 1992). Not every herd
was sampled every week or every year, resulting in a total
of 199 samples.

Monthly cattle mass gain data

We calculated paddock-scale average daily gain (ADG,
kg-head '-d ") from 2000 to 2019 for yearlings weighed
approximately every 28-days during the grazing season
across six different paddocks with stocking densities of
0.08-0.27 animal units (AU)/ha, where one AU is equiva-
lent to a 454-kg animal. It is worth noting that AU’s
change as a function of both the number of cattle within
a paddock and the size of individual animals, the latter of
which changes within a single grazing season. This
becomes important to consider when using sub-seasonal
mass data for fast-growing yearlings. For paddock-scale
ADG, we first calculated ADG for each individual year-
ling as the difference between the masses obtained at the
end and beginning of each period, divided by the number
of days in each period, and then averaged for all individ-
uals in the paddock. We excluded data from 2013 due to
data collection inconsistencies.

Most of the monthly mass data (97%) came from three
paddocks where cattle were weighed every year, whereas
in the other three paddocks, monthly masses were only
measured during 2017-2019 (Appendix S1: Table S1).
Apart from the 2013 data, which were not comparable to
data from other years, we chose to use all available mass
gain data for CPER to maximize spatial-temporal
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coverage and avoid potential bias from subjective deci-
sions to subset the data. This resulted in 269 paddock-
scale estimates of monthly ADG, with robust temporal,
but limited spatial, coverage.

Season-long cattle mass gain data

We calculated paddock-scale ADG for the entire grazing
season from 2010 to 2019 (excluding 2013) by averaging
seasonal ADG of each yearling, determined as the differ-
ence between the end and starting masses divided by the
number of days in the grazing season. This data set was

available for 40 paddocks spanning a range of soil types,
plant communities, and topographic positions. We note that
there was spatial overlap among a small number of pad-
dock boundaries across different years since some fence
lines were moved in 2012 and 2014 (see Appendix S1:
Table S1).

Satellite time-series and phenological metrics
We used a time series of daily 30-m NDVI (normalized

difference vegetation index) observations produced by
fusing surface reflectance imagery from Landsat and
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MODIS using the Spatial and Temporal Adaptive Reflec-
tance Fusion Model (STARFM; Gao et al.,, 2006). We
converted the NDVI time series to absorbed photosyn-
thetically active radiation (APAR) following methods
described in Gaffney et al. (2018) using average incoming
PAR, calculated for each day of the year for 2014-2019
using data from an onsite meteorological station.

To model diet quality, we produced five phenology-
related metrics from the daily APAR time series
(Figure 2), all of which can be calculated for any day dur-
ing the growing season. As a simple measure of green
vegetation, we calculated raw APAR (rAPAR), the APAR
value for a given day. In temperate climates, peak forage
quality has been linked to a peak in the instantaneous
rate of green-up (IRG), which can be calculated as the
maximum of the first derivative of a double-logistic
regression fit to an NDVI time series (Bischof et al., 2012;
Merkle et al., 2016). Therefore, we calculated the time
since peak IRG (tPeak) in days, using the APAR time-
series to calculate IRG. Since multimodal green-up curves
are not uncommon in our study area, we also wanted to
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FIGURE 2 Schematic example of phenological metrics for
28 August 2011 (an “average” year) for paddock 31E. (a) The APAR
time series, where the solid line is the observed APAR; dashed
line is a fitted double logistic curve; rAPAR is “raw” values of
greenness; tPeak is days since the instantaneous rate of green-up
(IRG) peaked; and iAPAR is integrated APAR since the start of
season (SOS), an indicator of live biomass accumulation. (b) The
30-day moving cumulative sum of the first derivative of APAR
(dAPAR), an indicator of the rate of greening. (c) An indicator of
senesced biomass accumulation (iAPAR-dry), which is an
integration of APAR decline

represent the degree to which APAR was increasing or
decreasing on a given day, which we calculated as the
cumulative change in APAR over the last 30 days
(dAPAR). Diet quality is not just related to cover and
greenness, but also structure and senescence (Drescher et al.,
2006), which are related to biomass accumulation
throughout the growing season. To represent live and
dead biomass, we used two metrics developed from the
cumulative change in APAR during the growing season.
First, we calculated integrated APAR (iAPAR) as the
cumulative sum of APAR since the start of the growing
season, which is strongly related to aboveground live
biomass production in this system (Gaffney et al., 2018).
Second, we created a new metric to estimate senesced
biomass (iIAPAR-dry). For each day that the first deriva-
tive of APAR was negative, we calculated the percent
decrease in the maximum APAR observed up until
that day and multiplied this by the integrated APAR
observed on that day. We then took the cumulative sum
of these values up until the observed day. Thus, this
metric represents an approximation of the cumulative
biomass that has senesced (i.e., converted from a living
to a non-living state).

Since the diet quality and cattle mass gain data
were only available at the paddock scale, we calculated
all metrics from the mean daily APAR time series of
each paddock after removing extreme pixel values,
identified as values outside the upper 99th and lower
first percentiles.

Data analysis
Diet quality model

We trained random forest models to predict CP and
DOM using the five phenological metrics. Random for-
ests are a type of machine learning algorithm built from
an ensemble of decision trees, which can achieve high
predictive accuracy and account for complex relation-
ships among input variables (Breiman, 2001). We chose
to use a random forest model since we expected
nonlinear and threshold-type relationships with metrics,
along with interactions between metrics. We used 10-fold
cross validation, stratified by 28-day periods, to determine
the optimal number of features to use at each branch-
split based on minimizing the mean squared error (MSE),
and set the minimum number of samples per split and
per leaf to two. We report the mean root mean squared
error (RMSE) and explained variance (R?) for the cross-
validated model fit (training data) and validation (test
data; RMSE-CV and RZ-CV), along with their standard
deviations.
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Forage biomass model

We used a linear regression model developed by
Gaffney et al. (2018) to calculate net aboveground
herbaceous productivity (ANHP; kg/ha) from iAPAR.
While ANHP is likely more representative of total biomass
production to date, rather than current standing biomass,
we chose this as an indicator of forage biomass since the
model was developed from field data collected at this
experimental site. We averaged the coefficients of four spa-
tial models (2013-2016) developed by Gaffney et al. (2018),
resulting in the following equation:

ANHP = —26.47 + 2.07(iAPAR).

Monthly cattle mass gain model

We trained a multivariate linear regression model to pre-
dict monthly ADG using the satellite-derived estimates of
diet quality (CP and DOM) and forage biomass (ANHP).
We fit broken line regressions for CP and DOM, since
thresholds are known to exist for both CP and DOM,
below which mass gain declines precipitously (Van
Soest, 1994). We used a second-order polynomial for
ANHP to allow for a nonlinear relationship between ADG
and forage biomass (Irisarri et al., 2019). We included
interactions between all variables, as well as an interaction
between each variable and stocking density. This allowed
for two hypothesized interactions: (1) differences in stock-
ing density change the slope of the relationship between
forage biomass and mass gain (Irisarri et al., 2019) and
(2) as cattle gain mass during the grazing season, their
energy requirements increase, thus changing the relation-
ship between forage biomass, DOM, and mass gain
(Caton & Olson, 2016). We report RMSE and R? of the
model, along with their mean and standard deviation from
10-fold cross-validation (RMSE-CV, R>-CV), stratified by
28-day periods.

Season-long cattle mass gain

We used the season-long mass gain data to evaluate the
predictive ability of our models across broader spatial
and temporal inference spaces. We predicted season-long
cattle mass gains by first predicting daily mass gain for
each day of the grazing season using the previously devel-
oped models. We predicted CP and DOM for each day
using a 7-day moving average, since these models were
developed from weekly averages. We predicted ANHP for
each day using the iAPAR observed for that day. We then
used a 28-day moving average of predicted CP, DOM,

and ANHP to predict “pseudo-daily” mass gain using the
monthly mass gain model, which was built from approxi-
mately 28-day averages. We calculated the initial stocking
density from the number of cattle and the average cattle
mass at the start of the grazing period for each paddock.
We then updated the stocking density for each day of the
season based on the predicted mass gain for that day in
each paddock, continuing until the end of the grazing
season to arrive at a final cattle off-mass. We calculated
the final ADG for the entire grazing season as the average
predicted ADG, starting 28 days into the growing season.
We did this to account for the 28-day moving average
and the fact that monthly mass gain measurements used
to create the model were never available within the first
28 days of the season.

We evaluated the overall performance of season-
long predictions of ADG and cattle off-masses using
metrics related to fit, error, and bias. To estimate fit,
we calculated the Pearson’s correlation coefficient
between predicted and observed ADG and off-masses.
To estimate error, we calculated the mean absolute
error (MAE) in the original units and as a percentage
of the overall mean observed values. We estimated
bias using the mean percent error (MPE), which
shows the degree to which errors tend to be over- or
underestimated.

In addition to evaluating the overall fit of the
predicted season-long mass gains, we also evaluated the
predictions spatially (i.e., for all available paddocks
within a given year) and temporally (i.e., for an individ-
ual paddock across all available years). Finally, we evalu-
ated two factors that we expected would drive variability
in our season-long predictions. First, in high forage pro-
duction years associated with above-average precipita-
tion, forage quality declines due to lower leaf: stem ratios
and livestock mass gains diminish at this site (Derner &
Hart, 2007). To test if this was captured in our model,
we plotted prediction fit metrics against ANHP at the
end of the grazing season across years. We also suspected
predictions may perform differently in paddocks with dif-
ferent vegetation types. To test this, we plotted prediction
fit metrics against sand content, the primary driver of vege-
tation community differences at this site (Augustine et al.,
2017), across paddocks.

RESULTS
Weekly diet quality
The random forest model predicted weekly CP better

than DOM, though both showed good model fit (Table 1,
Appendix S1: Figure S1). For CP, the cross-validated root
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mean squared error (RMSE-CV) of predictions was 10.4%
of the range of field-measured values while, for DOM, it
was 11.3%. The most important variables in the diet qual-
ity models were related to the time since peak green-up

TABLE 1 Results of random forest models predicting weekly
crude protein (CP) and digestible organic matter (DOM) from the
five satellite-derived phenological variables

CP (%) DOM (%)

Model fit

RMSE 0.51 0.79

R? 0.95 0.93
Model validation

RMSE-CV? 0.95 (0.15) 1.54 (0.26)

R%CV? 0.81 (0.11) 0.68 (0.10)
Variable importance

rAPAR 0.09 0.09

tPeak 0.33 0.21

dAPAR 0.26 0.19

iAPAR 0.09 0.09

iAPAR-dry 0.23 0.41

Note: See Satellite time-series and phenological metrics for variable
descriptions.

*Values are the mean and standard deviation, computed using cross
validation.

(tPeak), the rate of greening or browning (dAPAR), and
the senescent biomass accumulation (iAPAR-dry;
Table 1). Raw greenness (rAPAR) and live biomass accu-
mulation (IAPAR) were comparatively less important.
For DOM, senescent biomass accumulation (iAPAR-dry)
was the most important variable, with a score of nearly
twice the next most important variable. For CP, time
since peak green-up (tPeak) was the most important,
followed by the rate of greening (dAAPAR) and senescent
biomass accumulation (IAPAR-dry).

Partial dependence plots revealed that predicted CP
was highest close to peak green-up, indicated by tPeak
values near zero, and when APAR was high and increas-
ing, indicated by high values of dAPAR (Figure 3a). It
was lowest when time since peak green-up (tPeak) was
high, APAR was low and decreasing but becoming flat,
and senescent biomass accumulation (iAPAR-dry) was
high. Predicted DOM followed a similar pattern but was
especially sensitive to changes at the lower bounds of
iAPAR-dry, with predicted values quickly decreasing as
senescent biomass accumulation increased (Figure 3b).

Monthly cattle mass gain
The model predicting monthly ADG from satellite-

derived CP, DOM, and ANHP showed reasonably good
model fit (Figure 4; see Appendix S1: Table S2 for
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coefficients). The R*-CV was 0.62 and the RMSE-CV was
0.30 kg-head '-d ™" (SD = 0.04 kg), equivalent to 34% of
the mean observed monthly ADG. All coefficients were
significantly different from zero (p < 0.05) except the
interactions between AU and ANHP, and between AU and
CP (Appendix S1: Table S2). In general, the model fit a
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of fit, respectively. The dashed red lines indicate the 95%
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mean and standard deviation calculated using cross validation

nonlinear relationship between ADG and ANHP; ADG
increased with increasing ANHP up to a point, then
decreased, especially when diet quality was low (Figure 5).
High diet quality was only observed when ANHP was less
than ~2000 kg/ha. As stocking density increased, ADG
became more sensitive to changes in diet quality and ANHP.

Monthly ADG showed a clear segmented relationship
with CP and DOM (Appendix S1: Figure S2). Mass gains
declined more sharply below about 7.5% and 62.0%
satellite-derived CP and DOM, respectively, and mass loss
was only observed when CP was less than 8.0% and DOM
was less than 61.5%. Once interactions were included in the
final model, the segmented relationship was less pro-
nounced and slopes were similar below and above the
breakpoints for both CP and DOM (Appendix S1: Table S2).

Season-long cattle mass gain

When we applied the monthly ADG model to estimate
ADG at a pseudo-daily time step (e.g., Figure 6), we
obtained season-long ADG predictions that were strongly
correlated with observed ADG (Pearson’s r = 0.76;
P < 0.01). The mean average error (MAE) for ADG was
0.08 kg-head '-d™', equivalent to 89% of the mean
observed season-long ADG. Overall, predicted ADG showed
a slight bias toward overprediction (mean percent error,

od
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FIGURE 5 Marginal effects on average daily cattle mass gain (ADG; y-axis) of digestible organic matter (DOM, %; rows), stocking

density (animal units [AU] per ha; columns), and crude protein (CP, %; colors) across the range of forage production (ANHP; x-axis). Lines

in each panel show only the range of observed CP and ANHP associated with corresponding DOM (+1%) for that row
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FIGURE 6 Example from paddock 31E of (a, b) satellite-derived APAR, (c, d) predicted forage quantity (ANHP), (e-h) diet quality
(CP and DOM), (i, j) pseudo-daily mass gain (ADG), and (k, 1) cattle mass during the grazing season for a typical “average” year (2011) and
an “early” year with earlier-than-average forage green-up. Box plots in panels k and 1 show the observed on and off mass for all cattle in that

paddock

MPE = 2.7%), which was most pronounced when observed
ADG was above ~0.9 kg-head '-d'! (Figure 7). For final
cattle off-masses, MAE was 11.95 kg, or 2.9% of the mean
observed off-mass.

Observed season-long cattle mass gains varied more
over time than over space (Figure 7) and predictions were
less strongly correlated with observations when evaluated
spatially (Appendix S1: Tables S3 and S4). When we eval-
uated season-long predictions spatially within each of the
nine years with available data, we found an average cor-
relation coefficient between predicted and observed ADG
of 0.43 (SD = 0.35) and significant correlations in six of
the nine years (Figure 7a, Appendix S1: Table S3). The
three years with the lowest and nonsignificant

correlations where the three years with highest produc-
tivity (Appendix S1: Figure S3a). On average, the MPE
was +2.3% (SD = 8.5%), indicating a slight bias toward
over-predicting ADG across years. Predictions were less
biased in years with average biomass production (ANHP
~1,000-2,500 kg/ha), whereas the model was more likely
to overpredict ADG in years with very high productivity
(Figure 7b, Appendix S1: Figure S3b).

When we evaluated the season-long predictions tempo-
rally (i.e., across paddocks with four or more years of data),
we found an average correlation coefficient between
predicted and observed ADG of 0.79 (SD = 0.19) and sig-
nificant correlations in 8 of 10 pastures. On average, MPE
was +2.0% (SD = 5.2%), again indicating a slight bias
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FIGURE 7 Predicted vs. observed season-long average daily cattle mass gain (ADG). (a, b) The spatial fit of the model within each year

(a) and by the season-long productivity for each year (b). (c, d) The temporal fit of the model within individual paddocks (c) and by the sand
content of each paddock (d). The solid black line in each panel shows the 1:1 fit and the dashed line with shading shows the overall linear fit
(and its standard error) between predicted and observed ADG across all years and paddocks (Pearson’s correlation coefficient = 0.76; P < 0.01)

toward over-prediction (Figure 7c, Appendix S1: Table S4).
Correlations between predicted and observed ADG did not
appear to be related to sand content (Appendix SI:
Figure S3c). However, predictions tended to be less biased
in paddocks with intermediate to high soil sand content
(~60%-70%), whereas the model overpredicted ADG in the
paddock with the lowest sand content and underpredicted
in the paddock with the highest sand content (Appendix
S1: Figures 7d and S3d).

DISCUSSION

Predicting diet quality and large herbivore
performance from satellite data

Using five remotely sensed metrics, we were able to
explain over 90% of the variation in field-based measure-
ments of diet quality (CP and DOM). Previous work,
mostly with migrating wild ungulates, focused on the

timing and rate of spring green-up (i.e., IRG) as a key pre-
dictor of habitat selection, diet quality, and animal perfor-
mance (Bischof et al., 2012; Garel et al., 2011; Hamel et al.,
2009; Middleton et al.,, 2018). Time since peak IRG
(tPEAK) was important in our models as well, particularly
for predicting CP. However, we had the unique ability to
explore the impacts of lower diet quality because cattle
confined to paddocks are not able to “surf the green wave”
(Bischof et al., 2012; Merkle et al., 2016; Middleton et al.,
2018). Instead, they must respond to season-long shifts in
forage quality. In both CP and DOM models, iAPAR-dry
(an indicator of accumulated senesced forage) was an
important predictor, emphasizing the contribution of vege-
tation senescence as a driver of diet quality, especially later
in the growing season. Another important parameter,
dAPAR, allowed us to capture secondary green-up or dry-
down events occurring later in the season, which were not
captured by tPEAK. These results may be applicable to
other grazing systems where herbivores are forced to graze
on senesced vegetation, including wildlife experiencing
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regional drought that leads to widespread forage senes-
cence, or animals constrained by reduced mobility due
to habitat fragmentation (e.g., from roads, fencing, and
settlements).

Compared to the three metrics derived from the slope
and shape of the APAR curve, raw APAR and integrated
APAR were weak predictors of diet quality. This finding
underscores that raw NDVI levels, or predictions of accu-
mulated forage biomass, are insufficient for predicting
diet quality, and ultimately, animal performance. The
high variable importance of iAPAR-dry for predicting
DOM in this study demonstrates the value of using satel-
lite time-series metrics that seek to represent known phe-
nological drivers of diet quality such as shifts in cell
structure, lignin content, and C:N ratio. Our monthly
mass gain model further emphasizes the role that sen-
esced forage biomass plays in herbivore performance. For
monthly gains, we observed a complex relationship
between ANHP and diet quality; when diet quality was
low, higher biomass led to lower mass gains. Cattle in
this situation likely ate a higher proportion of vegetation
components with lower nutritional quality (e.g., stems
rather than leaves; Kloppenburg et al., 1995). This con-
cept of “rank grass” suppressing diet quality is widely rec-
ognized in productive, mesic grasslands (e.g., Craine et al.,
2013) and has led to the incorporation of various pre-
scribed burning techniques to enhance forage quality
(e.g., Allred et al., 2011). Here we show that these same
principles apply for cattle in shortgrass steppe where
biomass levels are relatively low. Even in this low-biomass
system, cattle shift their grazing distribution in space
and time in response to known drivers of forage quality
such as topographic variation (Gersie et al.,, 2019) and
prescribed burns (Augustine & Derner, 2014).

It is important to reiterate that the model used to esti-
mate forage quantity here was developed to predict ANHP
(Gaffney et al., 2018), and does not account for biomass
lost during the season (e.g., via trampling, transfer to the
litter layer, and consumption). Additionally, Gaffney
et al. (2018) showed that ANHP models that account for
spatial variation in vegetation structure performed better
than a single model, suggesting our estimation of ANHP
includes spatial error that cannot be corrected without
spatially explicit information on vegetation structure. This
may partly explain why our final mass gain model per-
formed better over time than over space (Figure 7,
Appendix S1: Tables S3 and S4). Models that accurately
predict standing biomass across a range of sites at a given
point in time may better reveal when cattle mass gains are
limited by forage quantity rather than quality.

Our efforts to scale models up to predict season-long
mass gains revealed both strengths and limitations of this

approach. Our model-predicted, season-long mass gains
showed strong correlations with observed mass gains
using few input variables, and we were able to predict
final cattle off-masses with just 3.0% error (corresponding
to average off-mass errors of ~12 kg per steer). However,
predictive ability varied across years and paddocks. The
model performed better over time than across space and
tended to predict better and with less bias in years with
average forage productivity and in paddocks with sandier
soils (Figure 7). These results emphasize the importance
of spatial heterogeneity as a driver of forage conditions
and large herbivore performance in semiarid rangelands.
We were limited in our ability to capture spatial dynam-
ics since most monthly mass gain data were collected
from paddocks containing loamy soils with gently undu-
lating topography, and all data were from a single experi-
mental range (6,270 ha) and only available at the scale of
individual paddocks. Our predictions would likely be
improved if data covered a wider range of soil types and
topographic conditions and better accounted for within-
paddock heterogeneity.

Another limitation of our model was the weaker and
more biased (tendency for overprediction) performance
when predicting cattle mass gain in years with high for-
age production. Given that our modeling approach
(1) allowed for a nonlinear relationship between forage
quantity and cattle gains and (2) accounted for the role of
diet quality, we expected the model to account for factors
that can suppress mass gains in productive years. One
possible explanation for why this wasn’t always the case
is that any spatial estimation error from the simple linear
regression model used to estimate ANHP from iAPAR is
likely exacerbated in years with high forage production.
Furthermore, paddocks used to train the model were
dominated by C, short grasses, which have only minor
negative feedback of grass stem growth in highly produc-
tive years. In contrast, paddocks where short grasses are
less dominant may have stronger negative feedbacks to
mass gains in years of high forage production with more
grass stem growth (Derner & Hart, 2007).

Applications

One major advantage of our approach is the use of a
Landsat-MODIS fusion product (Gao et al., 2015),
enabling the combination of ground data collected at dif-
ferent temporal frequencies to predict forage conditions
and cattle mass gains at a daily time step. This allows us
to evaluate how temporal mismatches between forage
phenology and the timing of grazing affect animal perfor-
mance. For example, in years where IRG peaked before
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cattle started grazing, cattle lost mass at the end of the
season and season-long ADG was below average, despite
above-average ANHP (Figure 6). These evaluations pro-
vide valuable insight for adapting to predicted changes in
forage phenology, such as earlier green-up in temperate
grasslands due to invasion by exotic plant species and cli-
mate change (Wilsey et al., 2018). This pseudo-daily
approach could be operationalized to generate near-real-
time estimates of diet quality and mass gains, which
could inform triggers used to move livestock among pad-
docks, or to predict wildlife herd health and reproduction
(Middleton et al., 2018).

Our work emphasizes that diet quality, rather than
forage quantity, may be the primary driver of cattle per-
formance in semiarid rangelands in most years. This rein-
forces findings from previous studies of wild ungulates
(Garel et al.,, 2011; Middleton et al., 2018) and bison
(Craine et al., 2013), and supports the forage maturation
and green wave hypotheses that herbivores migrate
to track high-quality forage at intermediate biomass
(Bischof et al., 2012; Merkle et al., 2016). The impact of
diet quality on mass gains may become even more impor-
tant to consider in the context of climate change.
Warming temperatures are expected to lower forage qual-
ity and cause it to peak earlier, especially if coupled
with decreased precipitation (Craine et al., 2010).
Increased CO, concentrations may also reduce forage
quality in the shortgrass steppe, regardless of warming
(Augustine et al., 2018). Our findings suggest that such
reductions in forage quality will suppress large herbi-
vore performance even if forage production remains
high. On the other hand, increasingly intense “deluge”
precipitation events may lead to late-season vegetation
growth that enhances forage quality without changing
total production (Post & Knapp, 2019), which could
improve animal performance.

Linking vegetation dynamics with large herbivore
performance has always been challenging in rangelands
and other extensive landscapes; the impetus to do so is
urgent given changing climatic conditions. The satellite-
based pseudo-daily approach presented here offers new
capabilities to understand these links, recognize the ways
in which they are changing, and evaluate the options
available for adaptive management.
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